Bounds of modulus of eigenvalues based on Stein equation
نویسندگان
چکیده
This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two sequences are presented which converge to the minimal and the maximal modulus of eigenvalues, respectively. We have to point out that the two sequences are not recommendable for practical use for finding the minimal and the maximal modulus of eigenvalues.
منابع مشابه
On the eigenvalues of some matrices based on vertex degree
The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملLower bounds on the solution of coupled algebraic Riccati equation
Upper bounds for eigenvalues of a solution to continuous time coupled algebraic Riccati equation (CCARE) and discrete time coupled algebraic Riccati equation (DCARE) are developed as special cases of bounds for the uni...ed coupled algebraic Riccati equation (UCARE). They include bounds of the maximal eigenvalues, the sums of the eigenvalues and the trace.
متن کاملRestriction Theorems for Orthonormal Functions, Strichartz Inequalities, and Uniform Sobolev Estimates Rupert L. Frank and Julien Sabin
We generalize the theorems of Stein–Tomas and Strichartz about surface restrictions of Fourier transforms to systems of orthonormal functions with an optimal dependence on the number of functions. We deduce the corresponding Strichartz bounds for solutions to Schrödinger equations up to the endpoint, thereby solving an open problem of Frank, Lewin, Lieb and Seiringer. We also prove uniform Sobo...
متن کاملSome remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 46 شماره
صفحات -
تاریخ انتشار 2010